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The present PhD thesis is devoted to the problem of the existence of designs
in projective coordinate geomtries over finite chain rings. These geometries are
usually referred to as Hjelmslev geometries. Their investigation was initiated in
the beginning of the 20th century by the Danish mathematician Johannes Hjelm-
slev. A serious advance in the understanding of these structures was achieved in
the works of Barbilian, Klingenberg, and Artman [1, 2, 3, 29, 30].

Coordinates of points in classic coordinate geometries are elements of a commu-
tative or noncommutative field. The first step in the consideration of geometries
over rings was made by Corrado Segre in 1911 in [49]. He considered a three-
dimensional projective geometry over the ring of dual numbers R[e| with 2 = 0,
as well as geometries over some other extensions of R. Chain rings over the real
numbers were studied at this time also in the geometries of Grunveld, Petersen,
Studi and Oscar Klein (see in [51]). Their appearance is not surprising and it
has already happened in the mechanics. Through the period 1929-1949 Johannes
Hjelmslev suggested "a more natural view to geometry" which is in "more precise
correspondence with the physical reality" [19, 20, 21|. Systematic research of pro-
jective planes over a wide class of associative rings was started by D. Barbilian
(1940-1941) [3]. The axiomatic rules he received were unsatisfactory because they
are partly of geometric and partly of algebraic nature referring to the coordinate
ring.

The investigations of Segre and Hjelmslev were extended by W. Klingenberg
[29, 30|, E. Kleinfeld [28], D.A Drake |7, 8, 9], P. Dembowski [6], A. Cronheim
[5] and other authors. They introduced axiomatic rules for projective and affine
planes over Hjelmslev’s rings and described their main properties. These rings
are local rings which satisfy some additional conditions.

The existence problem we study in this dissertation is motivated mainly by its
link to coding theory, although, it also represents a geometrical problem. At the
end of the 20th century it was proven that two famous families of nonlinear codes
— those of Kerdock and Preparata [48], can be presented as binary images of codes
over Zy4 |43, 18|. The research of linear codes over general finite rings was started
by Nechaev and J. A. Wood’s works [42, 43, 44, 46, 47, 52, 53, 54, 55|. At about
the same time, the research of linear codes was connected to the research of special
sets of points in Hjelmslev geometries. In T. Honold and I. Landjev’s works, the
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equivalence of full length linear codes over finite chain rings and multisets of points
in coordinate geometries over those rings was proven. [22, 23, 24].

The random network coding originates from one paper by R. Koetter and F.
Kschischang from 2008 [31]. Let I, be a finite field of order ¢ and let P,(n) be
the set of all subspaces of Fy — the vector space of n-tuples over F,. We call
a code of subsets 2 with length n over F, every nonempty set of elements of
P,(n). Equivalently, one code of subsets can be considered as a set of subspaces
in PG(n—1,¢q). A code €2 in which all the subspaces have the same dimension is
called code with constant dimension. Below an example of such a code is given:

Q- 1000 0100 0 0 1

N 01 10/)°7{0011/)7\11 1)’
1 010 1 001
0001/’\0 101

This is a binary code of subspaces with constant dimension 2 and package length
4. At the same time two-dimensional subspaces generated by the rows of these
matrices can be considered as lines in PG(3,2). Moreover, these lines form a

O =

special configuration called a spread of lines in PG(3,2), i.e. a set of lines which
is a partition of the set of points in PG(3,2). In this way every word is a line in
PG(3,2).
Let us introduce a new metric in P,(n) proposed originally by Delsarte and
a bit later by Gabidulin. It is called the rank metric and it sets the distances
between code words of a code of subspaces. For U,V € P,(n) we define:
ds(U, V) = dim(U+V)—dim(UNV)
= dimU +dimV —2dim(UNV)
= 2dim(U +V)—-dimU — dim V.

The minimal distance of a code of subspaces is defined by

ds(Q) = min {ds(U, V)| U,V € QU £ V}.

Let the data transmission be done by the so-called operator channel [26] by
using a code of subspaces () with package length n. Let during the transmission
of the word U there occur p erasures and ¢ mistakes and as a result the word
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V' is received. If 2(p +t) < dg(€?) then a decoder working on the principle of
decoding in the nearest neighbour (in the sense of the rank metrics) recovers the
word U which was sent. There exist analogues for all classic bounds for codes
in rank metrics, such as spherical packaging bound, Singleton bound, Johnson
bound, Gilbert-Varshamov bound, etc.

The two major directions of research just like in classical coding theory, are:

e Constructing optimal network codes (for example with maximal number of
words with all other parameters given),
e creating algorithms for efficient decoding of given network codes.

The present PhD thesis can be considered as a contribution to the first problem.
The interest in codes of subspaces has appeared before their application in net-
work coding. The problem of finding and characterizing g-analogues of classical
combinatorial configurations is much older [38] (Chapter 24). Design theory is
a well developed area and has obvious connections with coding theory. A lot
of famous combinatorial results have their g-analogues, such as Sperner [50] and
Erdgs-Ko-Rado [10] theorems. The number of papers on g-analogues of designs
increased in the past few years. Some problems were very popular such as the
problem of the existence of g-analogues of a Steiner system [4, 11, 12, 14]. The
result of this PhD thesis may be considered as a contribution to this circle of
problems in which a finite field is replaced by a finite chain ring.

The present dissertation is structured in an introduction, three chapters and a
list of used literature.

In chapter 2, we define the main objects studied in this PhD thesis as well as
some important results related to them. In section 2.1, we introduce chain rings
by the condition that their ideals form a chain by inclusion. Examples of some
important classes of chain rings are introduced, such as the rings of the o-dual
numbers and the Galois rings. The main characterization theorem for chain rings
is given. According to it every chain ring can be presented as a factor ring of
polynomials over a certain Galois ring. Furthermore, a canonical representation
of the elements of an arbitrary ring is presented, as well as a linear order over them
which is used in the computer representation of the elements of such rings and
in the algorithms for working with modules in chapter 3. The stated definitions
are demonstrated on the example of a Galois ring with 16 elements over F,.



In section 2.2, we present some fundamental facts for modules over finite chain
rings. The basic structure theorem for modules over chain rings, which is a corol-
lary of the general Krul-Schmidt theorem, is formulated. Notions like the type,
the dual type, the rank and the free rank of module are defined. Furthermore,
we state the central combinatorial result of this section. It gives the number of
the submodules of a given type g which are contained in a fixed R-module of
type A. This number happens to be a product of Gauss’ coefficients. A theorem
characterizing the orthogonal module M3 of a fixed module g M is formulated at
the end of section 2.2.

In section 2.3, we give some important definitions for objects in projective
Hjelmslev geometries. These geometries are defined in a similar way as the clas-
sical geometries PG(n — 1,¢) in which the finite field F, is replaced by a chain
ring R. For a given free-rank module M = rR" the set of points consists of
all submodules of M of free rank 1, lines are the submodules of M of free rank
2 and the incidence is defined by theoretical set inclusion. The difference from
the classical case is that every two points are incident with at least one line;
two points which are simultaneously incident with more than one line are called
neighbors. Hjelmslev geometries can also be defined axiomatically. It is known
[32, 33, 34, 35, 36| that under certain natural conditions they can be coordina-
tized by chain rings. A lot of results for classic geometries over finite fields have
their analogues in Hjelmslev geometries [39, 40]. In this work, only coordinatized
Hjelmslev geometries are considered.

Neighbour relation can be extended over lines and in general over subspaces of
arbitrary type. It turns out that neighbour relation is equivalence relation over
subspaces of one and the same type. The equivalence classes turn out to be well
structured. They can be embedded in Hjelmslev geometries over chain rings with
smaller nilpotency index. This important structure result is given in section 2.3.

The original contributions of this PhD thesis are contained in chapters 3 and
4.

Chapter 3 is devoted to the definition of a standard form of a matrix over chain
ring R. This question is of huge practical importance because of the necessity of
an effective way to represent submodules of g R™ and manipulations the need to
perform computer manipulations with them. We say that the matrix A = (a;;)kxn,
a;; € R, rad R = R0 is in standard form if the following conditions are satisfied:



(1) aj, =0"",t, €{0,...,m};

(2) a;s = 0™ 1B B € R, for every s < jj;

(3) a;s =043, B € R, for every s > jj;

(4) asj, < aj, for every s # i here < is the lexicographic order defined in section
2.1);

(5) 1 <Jo<g3<...

The main result here is contained in the following theorem:

Theorem 3.3. For every R-module g M < rR" there exists a unique matrix
in standard form whose rows generate the module.

Algorithms for working with modules are described in the remaining part of
this chapter. These algorithms include:

(A) algorithms for finding the standard form of a matrix;
(B) algorithms for finding the matrix which rows generate the union of two given

modules;
(C) algorithms that check whether a given module U is a submodule of other

module V.

Next we state a result from which we can obtain the orthogonal module Mz
of a given module gk M generated by the rows of a matrix in standard form. The
orthogonal module is generated by the rows of a matrix over R which is explicitly
given.

Theorem 3.8. Let g M be a submodule of g R" generated by the rows of the
matrix A in the form:

[ko AOl AO2 L AO,mfl AO,m
0 0Ly 0Ap ... 0Ai,. OAL
0 0 60, ... Ay, Ay,
0 0 0 ... 0" 0" A, .
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Then M3 is generated by the rows of the matrix:

BO,m Bl,m BQ,m T Bme,m Bmfl,m ]km
BO,mfle Bl,mfle B2,m710 e Bmf2,m719 [km_le 0
B Bo’m,202 Bl7m,292 Bzm,ﬁ? e Iy, 07 0 0
Bogem72 Blgem72 [k20m72 SR 0 0 0
B 0™t I, 0m1 0 e 0 0 0
where k,, =n —ko— ... — k,,—1 and
Bij = —(Ai — Z Aig Ak jr1+
1<k<j+1
Z A Ao — -+ (177 A A 'Aj,jJrl)T-
i<k<l<j+1

Next we present further algorithms for:

(D) finding the orthogonal module Mg of a given module g M;
(E) finding the intersection of two given modules g M and rN;
(F) generating all the submodules of fixed type of a given module g M.

Chapter 4 is devoted to the problem of finding necessary and sufficient con-
ditions for the existence of spreads in Hjelmslev projective geometries. In section
4.1, we describe R-analogues (analogues over the chain rings R) for different types
of designs. Firstly, we describe the Grassmannian Ggr(n, k) as the set of all left
submodules of rR" of type k, where k = (ky1,...,k,), m >k > ... >k, > 0.
Then we describe the link between R-covering designs and Turan R-designs (The-
orem 4.4). We find a necessary and sufficient condition for the existence of 7-
(n, k,1) designs — analogues of the classic ¢-(v, k, \) designs. Geometric spreads
are a special case of T-designs with 7 = (m,0,...,0).

In section 4.2, we study the question of finding necessary and sufficient con-
ditions for the existence of spreads in projective Hjelmslev geometries. In the
classic case of spreads of r-dimensional subspaces in PG(n, ¢), the combinatorial
necessary condition, which states that the number of points in the r-dimensional
subspace should divide the number of points in PG(n, q), is also sufficient. The
situation is much more complicated in the case of chain rings. It is known that
in the classic case of spreads of free rank submodules the combinatorial necessary
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condition is also sufficient. Main results in this section are contained in theorems
4.10-4.12, which we will define next.

Theorem 4.10 Let R be a chain ring of length m. If there exists a A-spread in
PHG(rR"™), where A = (A, ..., AZ)’ )\1~2 ... >\, > 0, then there exists also a
p-spread in the geometry PHG(zR"), R = R/(rad R)™ *», where

n= (/\1_)\n7)\2_)\na"'7)\n—l_/\n70)'

Once again, let R be a fixed chain ring with |R| = ¢™, R/rad R = F,. Let also
g = p" and char R = p®. Let us write m in the following way m = (s — 1)l + ¢.
The ring R may also be presented as (Theorem 2.2)

R = S[X;0]/(9(X),p"' X"),
where S = GR(¢*, p®) and o is an automorphism of S. It is clear that S/rad S =
F,. We define a Galois extension T = S[Y|/(f(Y)) for the ring S, where f is
irreducible over S and of power h. Let us now define the ring

Q = T[X;0]/(9(X),p" ' X").
Theorem 4.11 Let R be a chain ring with |R| = ¢", R/rad R = F,. Let from

here on @) be the extension of R we define earlier. Let n = hl and let us assume
that there exists a A-spread in PHG(oQ"), with

)\:<)\1,)\2,...,)\l), m:/\1 2)\22 Z)\l ZO
Then there exists a p-spread in PHG(gR™), with

u:(3\1,...,)\1/,\)\2,...,)\2,...,)\1,...,)\1).
n n h

Teorema 4.12 Let R be an arbitrary chain ring with |R| = ¢, R/rad R = F,,
and let n be an integer. For every divisor h of n and for every type A:

A =ml(m — 1)l (i — 2)tm—2h | jah
where a; >0il+a1+ ...+ ap_1 = %, there exists a A-spread in PHG(gR").

The question of the existence of spreads of submodules of types which are differ-
ent from those mentioned in theorems 4.10-4.12 is of great interest. In section 4.3
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we find types of submodules for which the combinatorial necessary condition is
satisfied, but spreads do not exist. This fact is the stated in Theorem 4.13.



Scientific contibutions

The main scientific contributions of the present PhD thesis according to the
author are:

(1) A standard form of a matrix over finite chain ring R is found. It has the
property that for every finitely generated module gk M there exists a unique
matrix in standard form whose rows generate g M.

(2) For a given right module g M generated by the rows of a matrix in standard
form is found whose rows generate the orthogonal module M.

(3) Algorithms for working with modules are presented: finding a matrix in stan-
dard form which generates a given module, finding a module generated by
given submodules, an algorithm which checks containment in a module, an
algorithm generating the orthogonal module, an algorithm for finding the in-
tersection of two modules, and an algorithm generating all the submodules of
fixed type for a given module.

(4) Sufficient conditions for the existence of spreads of non-free rank submodules
are proven.

(5) Examples for some types A are constructed for which the combinatorial nec-
essary conditon is not sufficient.
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